资源类型

期刊论文 52

年份

2024 1

2023 11

2022 3

2021 11

2020 5

2018 4

2017 7

2015 2

2014 1

2013 2

2012 1

2010 3

2008 1

展开 ︾

关键词

Al@AP/PVDF纳米复合材料 1

Cu(In 1

Fe、Co、Ru 碳化物 1

Ga)Se2 1

Nd-Fe-B磨削油泥 1

PDT 1

一氧化碳氧化 1

亚稳态分子间复合材料 1

傅里叶变换红外成像 1

内部取代BN 1

再生烧结磁体 1

加窗 1

吸附脱硫 1

富稀土合金掺杂 1

尺寸效应 1

微地形 1

支持向量 1

晶相结构 1

氧化石墨烯 1

展开 ︾

检索范围:

排序: 展示方式:

Enhanced electrochemical performance of CoNiS@TiCT electrode material through doping of cobalt element

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1440-1449 doi: 10.1007/s11705-023-2333-9

摘要: The composite electrode of CoNiSx and Ti3C2Tx MXene was successfully prepared using a one-step hydrothermal method under the in-situ doping of the cobalt element. The effects of in-situ doping of the cobalt element on the micromorphology and electrochemical performance of the electrodes were investigated. After in-situ doping of the cobalt element, NiS with a needle-like structure was converted into a CoNiSx with petal-like structure. The petal-like CoNiSx with a rough surface was very dense and evenly wrapped on the surface and interlamination of Ti3C2Tx, which helped increase the specific surface area and pore volume of the electrode. Under the identical test conditions, CoNiSx@Ti3C2Tx had a higher specific capacitance and capacitance retention than NiS@Ti3C2Tx. This result indicated that the in-situ doping of the cobalt element promoted the electrochemical performance of the electrode. The energy density of the CoNiSx@Ti3C2Tx/nickel foam (NF)//activated carbon (AC)/NF asymmetric supercapacitor device was 59.20 Wh·kg–1 at a power density of 826.73 W·kg–1, which was much higher than that of NiS@Ti3C2Tx/NF//AC/NF. Three CoNiSx@Ti3C2Tx/NF//AC/NF in series were able to illuminate the light emitting diode lamp for about 10 min, which was higher than the 5 min of three NiS@Ti3C2Tx/NF//AC/NF in series under the same condition. The CoNiSx@Ti3C2Tx/NF//AC/NF with high energy density had better application potential in energy storage than the NiS@Ti3C2Tx/NF//AC/NF.

关键词: MXene     supercapacitor     cobalt doping     structure characterization     electrochemical performance    

Phosphorus-doped Ni–Co sulfides connected by carbon nanotubes for flexible hybrid supercapacitor

《化学科学与工程前沿(英文)》 2023年 第17卷 第5期   页码 491-503 doi: 10.1007/s11705-022-2257-9

摘要: As promising electrode materials for supercapacitors, nickel-cobalt bimetallic sulfides render the advantages of abundant redox reactions and inherently high conductivity. However, in general, unsatisfactory performance of low specific capacity, low rate capability, and fast capacity loss exist in Ni–Co sulfide electrodes. Herein, we rationally regulate phosphorus-doped nickel–cobalt sulfides (P-NCS) to enhance the electrochemical performance by gas–solid phosphorization. Moreover, carbon nanotubes (CNTs) as conductive additives are added to improve the cycle stability and conductivity and form the composite P-NCS/C/CNT. According to density functional theory, more electrons near the Fermi surface of P-NCS are demonstrated notionally than those of simple CoNi2S4. Electrochemical results manifest that P-NCS/C/CNT exhibits superior electrochemical performance, e.g., high specific capacity (932.0 C∙g‒1 at 1 A∙g‒1), remarkable rate capability (capacity retention ratio of 69.1% at 20 A∙g‒1), and lower charge transfer resistance. More importantly, the flexible hybrid asymmetric supercapacitor is assembled using P-NCS/C/CNT and activated carbon, which renders an energy density of 34.875 W·h∙kg‒1 at a power density of 375 W∙kg‒1. These results show that as-prepared P-NCS/C/CNT demonstrates incredible possibility as a battery-type electrode for high-performance supercapacitors.

关键词: cobalt nickel sulfide     phosphorus-doping     hybrid supercapacitor     carbon nanotube     density functional theory    

Synthesis and electrocatalytic property of cubic and spherical nanoparticles of cobalt platinum alloys

Xiaowei TENG, Hong YANG,

《化学科学与工程前沿(英文)》 2010年 第4卷 第1期   页码 45-51 doi: 10.1007/s11705-009-0308-0

摘要: This paper describes the morphological control and electrocatalytic property of CoPt nanoparticles. Both cubic and spherical CoPt nanoparticles were made using cobalt carbonyl and platinum 2,4-pentanedionate under different reaction temperatures in the presence of capping reagents, which included adamantanecarboxylic acid and hexadecylamine. Effects of heterogeneous species on shape of the CoPt nanoparticles were examined by replacing cobalt carbonyl with silver acetylacetonate. Our results suggest that the formation of different shapes of CoPt particles could be attributed to the affinity between cobalt and platinum, and the effects of capping agents. The size and shape dependent electrocatalytic properties of these nanoparticles were examined based on the direct methanol oxidation reaction.

关键词: spherical     2     4-pentanedionate     adamantanecarboxylic     acetylacetonate     electrocatalytic    

Effect of metal ion-doping on characteristics and photocatalytic activity of TiO

Rongfang YUAN,Beihai ZHOU,Duo HUA,Chunhong SHI

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 850-860 doi: 10.1007/s11783-014-0737-y

摘要: The effect of ion-doping on TiO nanotubes were investigated to obtain the optimal TiO nanotubes for the effective decomposition of humic acids (HA) through O /UV/ion-doped TiO process. The experimental results show that changing the calcination temperature, which changed the weight fractions of the anatase phase, the average crystallite sizes, the Brunauer-Emmett-Teller surface area, and the energy band gap of the catalyst, affected the photocatalytic activity of the catalyst. The ionic radius, valence state, and configuration of the dopant also affected the photocatalytic activity. The photocatalytic activities of the catalysts on HA removal increased when Ag , Al , Cu , Fe , V , and Zn were doped into the TiO nanotubes, whereas such activities decreased as a result of Mn - and Ni -doping. In the presence of 1.0 at.% Fe -doped TiO nanotubes calcined at 550°C, the removal efficiency of HA was 80% with a pseudo-first-order rate constant of 0.158 min . Fe in TiO could increase the generation of ·OH, which could remove HA. However, Fe in water cannot function as a shallow trapping site for electrons or holes.

关键词: TiO2 nanotubes     ion-doping     humic acids     pseudo-first-order     mechanism    

Cobalt nanoparticle decorated N-doped carbons derived from a cobalt covalent organic framework for oxygen

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1550-1560 doi: 10.1007/s11705-021-2104-4

摘要: The low cost and highly efficient construction of electrocatalysts has attracted significant attention owing to the use of clean and sustainable energy technologies. In this work, cobalt nanoparticle decorated N-doped carbons (Co@NC) are synthesized by the pyrolysis of a cobalt covalent organic framework under an inert atmosphere. The Co@NC demonstrates improved electrocatalytic capabilities compared to N-doped carbon without the addition of Co nanoparticles, indicating the important role of cobalt. The well-dispersed active sites (Co-Nx) and the synergistic effect between the carbon matrix and Co nanoparticles greatly enhance the electrocatalytic activity for the oxygen reduction reaction. In addition, the Co content has a significant effect on the catalytic activity. The resulting Co@NC-0.86 exhibits a superb electrocatalytic activity for the oxygen reduction reaction in an alkaline electrolyte in terms of the onset potential (0.90 V), half-wave potential (0.80 V) and the limiting current density (4.84 mA·cm–2), and a high selectivity, as well as a strong methanol tolerance and superior durability, these results are comparable to those of the Pt/C catalyst. Furthermore, the superior bifunctional activity of Co@NC-0.86 was also confirmed in a home-built Zn-air battery, signifying the possibility for application in electrode materials and in current energy conversion and storage devices.

关键词: cobalt embedment     N-doped carbons     covalent organic framework     oxygen reduction     Zn-air battery    

A potentiometric cobalt-based phosphate sensor based on screen-printing technology

Lei ZHU,Xiaohong ZHOU,Hanchang SHI

《环境科学与工程前沿(英文)》 2014年 第8卷 第6期   页码 945-951 doi: 10.1007/s11783-013-0615-z

摘要: A potentiometric cobalt-based screen-printing sensor was fabricated by electroplating cobalt on the surface of a screen-printing electrode as the sensitive layer for the determination of dihydrogenphosphate ( ) in wastewater samples. The electrochemical performance of this sensor was fully examined to determine its detection calibration, detection limit, response time, selectivity, and interference with pH, various ions, and dissolved oxygen (DO). The cobalt-based phosphate sensor showed a phosphate-selective potential response in the range of 10 mol·L to 10 mol·L , yielding a detection limit of 3.16 × 10 mol?L and a slope of -37.51 mV?decade in an acidic solution (pH 4.0) of . DO and pH were found to interfere with sensor responses to phosphate. Ultimately, the performance of the sensor was validated for detecting wastewater samples from the Xiaojiahe Wastewater Treatment Plant against the standard spectrophotometric methods for analysis. The discrepancy between the two methods was generally ±5% (relative standard deviation). Aside from its high selectivity, sensitivity, and stability, which are comparable with conventional bulk Co-wire sensors, the proposed phosphate sensor presents many other advantages, such as low price, compactness, ease of use, and the possibility of integration with other analytical devices, such as flow injectors.

关键词: phosphate     cobalt     screen-printing technology     electroplate     wastewater    

Room temperature oxidation of acetone by ozone over alumina-supported manganese and cobalt mixed oxides

Mehraneh Ghavami, Mostafa Aghbolaghy, Jafar Soltan, Ning Chen

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 937-947 doi: 10.1007/s11705-019-1900-6

摘要: Volatile organic compounds (VOCs) are among the major sources of air pollution. Catalytic ozonation is an efficient process for removing VOCs at lower reaction temperature compared to catalytic oxidation. In this study, a series of alumina supported single and mixed manganese and cobalt oxides catalysts were used for ozonation of acetone at room temperature. The influence of augmenting the single Mn and Co catalysts were investigated on the performance and structure of the catalyst. The manganese and cobalt single and mixed oxides catalysts of the formula Mn10%-CoX and Co10%-MnX (where X= 0, 2.5%, 5%, or 10%) were prepared. It was found that addition of Mn and Co at lower loading levels (2.5% or 5%) to single metal oxide catalysts enhanced the catalytic activity. The mixed oxides catalysts of (Mn10%-Co2.5%) and (Mn10%-Co5%) led to acetone conversion of about 84%. It is concluded that lower oxidation state of the secondary metal improves ozone decomposition and oxidation of acetone.

关键词: ozone     VOC     manganese oxides     cobalt oxides     alumina support    

Noble-metal-free cobalt hydroxide nanosheets for efficient electrocatalytic oxidation

Jie Lan, Daizong Qi, Jie Song, Peng Liu, Yi Liu, Yun-Xiang Pan

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 948-955 doi: 10.1007/s11705-020-1920-2

摘要: Cobalt hydroxide has been emerging as a promising catalyst for the electrocatalytic oxidation reactions, including the oxygen evolution reaction (OER) and glucose oxidation reaction (GOR). Herein, we prepared cobalt hydroxide nanoparticles (CoHP) and cobalt hydroxide nanosheets (CoHS) on nickel foam. In the electrocatalytic OER, CoHS shows an overpotential of 306 mV at a current density of 10 mA·cm . This is enhanced as compared with that of CoHP (367 mV at 10 mA·cm ). In addition, CoHS also exhibits an improved performance in the electrocatalytic GOR. The improved electrocatalytic performance of CoHS could be due to the higher ability of the two-dimensional nanosheets on CoHS in electron transfer. These results are useful for fabricating efficient catalysts for electrocatalytic oxidation reactions.

关键词: electrocatalytic oxidation     cobalt hydroxide     nanosheet     water     glucose    

Fischer-Tropsch synthesis by reduced graphene oxide nanosheets supported cobalt catalysts: Role of support

Hasan Oliaei Torshizi, Ali Nakhaei Pour, Ali Mohammadi, Yahya Zamani, Seyed Mehdi Kamali Shahri

《化学科学与工程前沿(英文)》 2021年 第15卷 第2期   页码 299-309 doi: 10.1007/s11705-020-1925-x

摘要: In this paper, a series of cobalt catalysts supported on reduced graphene oxide (rGO) nanosheets with the loading of 5, 15 and 30 wt-% were provided by the impregnation method. The activity of the prepared catalysts is evaluated in the Fischer-Tropsch synthesis (FTS). The prepared catalysts were carefully characterized by nitrogen adsorption-desorption, hydrogen chemisorption, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, temperature programmed reduction, transmission electron microscopy, and field emission scanning electron microscopy techniques to confirm that cobalt particles were greatly dispersed on the rGO nanosheets. The results showed that with increasing the cobalt loading on the rGO support, the carbon defects are increased and as a consequence, the reduction of cobalt is decreased. The FTS activity results showed that the cobalt-time yield and turnover frequency passed from a maximum for catalyst with the Co average particle size of 15 nm due to the synergetic effect of cobalt reducibility and particle size. The products selectivity results indicated that the methane selectivity decreases, whereas the C selectivity raises with the increasing of the cobalt particle size, which can be explained by chain propagation in the primary chain growth reactions.

关键词: cobalt catalyst     cobalt particle size     Fischer-Tropsch synthesis     reduced graphene oxide     supported catalyst    

Tuning the electronic structure of NiCoP arrays through V doping for pH-universal hydrogen evolution

Yu Lin, Jinlei Wang, Duanlin Cao, Yaqiong Gong

《化学科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 1134-1146 doi: 10.1007/s11705-020-2014-x

摘要: The exploration of cost-effective, high-performance, and stable electrocatalysts for the hydrogen evolution reaction (HER) over wide pH range (0–14) is of paramount importance for future renewable energy conversion technologies. Regulation of electronic structure through doping vanadium atoms is a feasible construction strategy to enhance catalytic activities, electron transfer capability, and stability of the HER electrode. Herein, V-doped NiCoP nanosheets on carbon fiber paper (CFP) (denoted as V -NiCoP/CFP) were constructed by doping V modulation on NiCoP nanosheets on CFP and used for pH-universal HER. Benefiting from the abundant catalytic sites and optimized hydrogen binding thermodynamics, the resultant V -NiCoP/CFP demonstrates a significantly improved HER catalytic activity, requiring overpotentials of 46.5, 52.4, and 85.3 mV to reach a current density of 10 mA·cm in 1 mol·L KOH, 0.5 mol·L H SO , and 1 mol·L phosphate buffer solution (PBS) electrolytes, respectively. This proposed cation-doping strategy provides a new inspiration to rationally enhance or design new-type nonprecious metal-based, highly efficient, and pH-universal electrocatalysts for various energy conversion systems.

关键词: hydrogen evolution reaction     transition metal phosphides     pH-universal     vanadium doping     carbon fiber paper    

Tuning nitrogen defects and doping sulfur in carbon nitride for enhanced visible light photocatalytic

《化学科学与工程前沿(英文)》 2023年 第17卷 第1期   页码 93-101 doi: 10.1007/s11705-022-2175-x

摘要: Defect construction and heteroatom doping are effective strategies for improving photocatalytic activity of carbon nitride (g-C3N4). In this work, N defects were successfully prepared via cold plasma. High-energy electrons generated by plasma can produce N defects and embed sulfur atoms into g-C3N4. The N defects obviously promoted photocatalytic degradation performance that was 7.5 times higher than that of pure g-C3N4. The concentration of N defects can be tuned by different power and time of plasma. With the increase in N defects, the photocatalytic activity showed a volcanic trend. The g-C3N4 with moderate concentration of N defects exhibited the highest photocatalytic activity. S-doped g-C3N4 exhibited 11.25 times higher photocatalytic activity than pure g-C3N4. It provided extra active sites for photocatalytic reaction and improved stability of N defects. The N vacancy-enriched and S-doped g-C3N4 are beneficial for widening absorption edge and improving the separation efficiency of electron and holes.

关键词: g-C3N4     nitrogen defect     sulfur doping     photodegradation     plasma    

Metal phosphonate-derived cobalt/nickel phosphide@N-doped carbon hybrids as efficient bifunctional oxygen

《化学科学与工程前沿(英文)》 2022年 第16卷 第9期   页码 1367-1376 doi: 10.1007/s11705-022-2153-3

摘要: The exploration of efficient bifunctional electrocatalysts for oxygen reduction reaction and oxygen evolution reaction is pivotal for the development of rechargeable metal–air batteries. Transition metal phosphides are emerging as promising catalyst candidates because of their superb activity and low cost. Herein, a novel metal phosphonate-derived cobalt/nickel phosphide@N-doped carbon hybrid was developed by a carbothermal reduction of cobalt/nickel phosphonate hybrids with different Co/Ni molar ratios. The metal phosphonate derivation method achieved an intimately coupled interaction between metal phosphides and a heteroatom-doped carbon substrate. The resultant Co2P/Ni3P@NC-0.2 enables an impressive electrocatalytic oxygen reduction reaction activity, comparable with those of state-of-the-art Pt/C catalysts in terms of onset potential (0.88 V), 4e selectivity, methanol tolerance, and long-term durability. Moreover, remarkable oxygen evolution reaction activity was also observed in alkaline conditions. The high activity is ascribed to the N-doping, abundant accessible catalytic active sites, and the synergistic effect among the components. This work not only describes a high-efficiency electrocatalyst for both oxygen reduction reaction and oxygen evolution reaction, but also highlights the application of metal phosphonate hybrids in fabricating metal phosphides with tunable structures, which is of great significance in the energy conversion field.

关键词: metal phosphonate     cobalt/nickel phosphide     N-doped carbon     oxygen electrochemistry     Zn−air battery    

Hierarchically porous cellulose nanofibril aerogel decorated with polypyrrole and nickel-cobalt layered

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1593-1607 doi: 10.1007/s11705-023-2348-2

摘要: With increasing emphasis on green chemistry, biomass-based materials have attracted increased attention regarding the development of highly efficient functional materials. Herein, a new pore-rich cellulose nanofibril aerogel is utilized as a substrate to integrate highly conductive polypyrrole and active nanoflower-like nickel-cobalt layered double hydroxide through in situ chemical polymerization and electrodeposition. This ternary composite can act as an effective self-supported electrode for the electrocatalytic oxidation of glucose. With the synergistic effect of three heterogeneous components, the electrode achieves outstanding glucose sensing performance, including a high sensitivity (851.4 µA·mmol−1·L·cm−2), a short response time (2.2 s), a wide linear range (two stages: 0.001−8.145 and 8.145−35.500 mmol·L−1), strong immunity to interference, outstanding intraelectrode and interelectrode reproducibility, a favorable toxicity resistance (Cl), and a good long-term stability (maintaining 86.0% of the original value after 30 d). These data are superior to those of some traditional glucose sensors using nonbiomass substrates. When determining the blood glucose level of a human serum, this electrode realizes a high recovery rate of 97.07%–98.89%, validating the potential for high-performance blood glucose sensing.

关键词: cellulose nanofibril     aerogel     nickel-cobalt layered double hydroxide     polypyrrole     nonenzymatic glucose sensor    

Experimental studies on extraction of cobalt ions from dilute aqueous solutions by using complexation-ultrafiltration

Jianxian ZENG, Junfeng LIU, Niandong HUANG,

《化学科学与工程前沿(英文)》 2010年 第4卷 第3期   页码 360-366 doi: 10.1007/s11705-009-0269-3

摘要: The extraction of cobalt ions from dilute aqueous solutions was investigated by ultrafiltration with the help of poly(acrylic acid) sodium salt (PAASS). Polysulfone and polyethersulfone hollow fiber ultrafiltration membranes were employed in this process. The kinetics of complexation reaction was studied for PAASS with Co. Results showed that, under a large excess of PAASS, it takes 65, 55 and 40 min at pH 5, 6 and 7, respectively, to get the equilibrium of complexation. The reaction kinetics can be described by a pseudo-first-order equation. Then, the effects of various parameters on the extraction of Co were examined in detail. Results indicated that loading ratio, pH value and low-molecular competitive complexing agent affect significantly cobalt rejection coefficient . Furthermore, a concentration experiment was carried out at pH 7. With increasing volume concentration factor, membrane flux declines slowly, and value is always about 1. The concentrated retentate was used further for a decomplexation experiment. The decomplexation ratio of cobalt-PAASS complex reaches as high as 90.1%. After the decomplexation step, a diafiltration experiment was performed at pH 2.5. Cobalt ions can be extracted satisfactorily from the retentate, and a purified PAASS is obtained.

Enhancement of open circuit voltage in organic solar cells by doping a fluorescent red dye

Qing LI, Junsheng YU, Yue ZANG, Nana WANG, Yadong JIANG

《能源前沿(英文)》 2012年 第6卷 第2期   页码 179-183 doi: 10.1007/s11708-012-0177-y

摘要: The open circuit voltage ( ) of small-molecule organic solar cells (OSCs) could be improved by doping suitable fluorescent dyes into the donor layers. In this paper, 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) was used as a dopant, and the performance of the OSCs with different DCJTB concentration in copper phthalocyanine (CuPc) was studied. The results showed that the of the OSC with 50% of DCJTB in CuPc increased by 15%, compared with that of the standard CuPc/fullerene (C ) device. The enhancement of the was attributed to the lower highest occupied molecular orbital (HOMO) level in the DCJTB than that in the CuPc. Also, the light absorption intensity is enhanced between 400 and 550 nm, where CuPc and C have low absorbance, leading to a broad absorption spectrum.

关键词: organic solar cells (OSCs)     open circuit voltage     fluorescent dye doping     4-(dicyanomethylene)-2-t-butyl-6-(1     1     7     7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB)    

标题 作者 时间 类型 操作

Enhanced electrochemical performance of CoNiS@TiCT electrode material through doping of cobalt element

期刊论文

Phosphorus-doped Ni–Co sulfides connected by carbon nanotubes for flexible hybrid supercapacitor

期刊论文

Synthesis and electrocatalytic property of cubic and spherical nanoparticles of cobalt platinum alloys

Xiaowei TENG, Hong YANG,

期刊论文

Effect of metal ion-doping on characteristics and photocatalytic activity of TiO

Rongfang YUAN,Beihai ZHOU,Duo HUA,Chunhong SHI

期刊论文

Cobalt nanoparticle decorated N-doped carbons derived from a cobalt covalent organic framework for oxygen

期刊论文

A potentiometric cobalt-based phosphate sensor based on screen-printing technology

Lei ZHU,Xiaohong ZHOU,Hanchang SHI

期刊论文

Room temperature oxidation of acetone by ozone over alumina-supported manganese and cobalt mixed oxides

Mehraneh Ghavami, Mostafa Aghbolaghy, Jafar Soltan, Ning Chen

期刊论文

Noble-metal-free cobalt hydroxide nanosheets for efficient electrocatalytic oxidation

Jie Lan, Daizong Qi, Jie Song, Peng Liu, Yi Liu, Yun-Xiang Pan

期刊论文

Fischer-Tropsch synthesis by reduced graphene oxide nanosheets supported cobalt catalysts: Role of support

Hasan Oliaei Torshizi, Ali Nakhaei Pour, Ali Mohammadi, Yahya Zamani, Seyed Mehdi Kamali Shahri

期刊论文

Tuning the electronic structure of NiCoP arrays through V doping for pH-universal hydrogen evolution

Yu Lin, Jinlei Wang, Duanlin Cao, Yaqiong Gong

期刊论文

Tuning nitrogen defects and doping sulfur in carbon nitride for enhanced visible light photocatalytic

期刊论文

Metal phosphonate-derived cobalt/nickel phosphide@N-doped carbon hybrids as efficient bifunctional oxygen

期刊论文

Hierarchically porous cellulose nanofibril aerogel decorated with polypyrrole and nickel-cobalt layered

期刊论文

Experimental studies on extraction of cobalt ions from dilute aqueous solutions by using complexation-ultrafiltration

Jianxian ZENG, Junfeng LIU, Niandong HUANG,

期刊论文

Enhancement of open circuit voltage in organic solar cells by doping a fluorescent red dye

Qing LI, Junsheng YU, Yue ZANG, Nana WANG, Yadong JIANG

期刊论文